Какой химический состав клетки

§ 8. Химический состав клетки

какой химический состав клетки

1.Что такое химический элемент?

Все вещества во вселенной состоят из маленьких частиц — атомов. Химическим элементом называют определённый набор атомов, присущих тому или иному веществу. Все атомы химического элемента объединяются в едином порядке, имеют единую массу и единые прочие характеристики.

На сегодняшний момент известно 118 химических элементов. Среди них углерод, азот, кислород, железо, цинк, серебро, золото, ртуть, сера, кальций, магний и другие элементы.

2. Какие органические вещества вам известны?

К органическим веществам относятся белки, жиры, углеводы и нуклеиновые кислоты.

3. Какие вещества называют простыми, а какие — сложными?

К простым химическим веществам относятся вещества, состоящие из атомов только одного химического элемента. Например: кислород, железо, азот, магний, золото, серебро и так далее.

К сложным химическим элементам относятся вещества, состоящие из двух и более видов атомов. Например: вода (состоит из атомов водорода и кислорода), углекислый газ (состоит из атомов углерода и кислорода), поваренная соль (состоит их атомов натрия и хлора) и многие другие.

Вопросы в конце параграфа

1. Каких химических элементов больше всего в клетке? Какую роль в клетке играет вода?

Больше всего в живой клетке находится углерода, водорода, кислорода и азота. На эти вещества приходится 98% массы любой клетки.

Оставшиеся 2% клетки состоят из калия, натрия, кальция, хлора, магния, фосфора, серы и железа.

Роль воды в клетке невероятно высока. Именно вода придаёт клетке упругость, определяет её форму и участвует в обмене веществ. 

2. Какие вещества относят к органическим?

К основным органическим веществам относятся жиры, белки, углеводы и нуклеиновые кислоты. Существуют и другие органические вещества.

3. Каково значение органических веществ в клетке?

У каждого вида органических существ есть своя роль в живой клетке:

  • углеводы придают прочность оболочкам клеток, обеспечивают клетки энергией (она врабатывается в процессе расщепления углеводов) и питательными веществами — крахмалом, сахаром и другими углеводами;
  • белки являются строительным материалом для клеток и клеточных структур и регулируют процессы жизнедеятельности клетки;
  • жиры — это неистощимый источник энергии для клетки, поскольку в процессе их расщепления освобождается достаточно энергии для жизнедеятельности клетки;
  • нуклеиновые кислоты необходимы клетке для сохранения и передачи потомкам наследственной информации. 

Подумайте

Почему клетку сравнивают с «миниатюрной природной лабораторией»?

Несмотря на то, что по размеру живые клетки очень маленькие и рассмотреть их можно только в микроскоп, они действительно являются мощнейшими природными лабораториями. Именно в клетках с веществами происходят удивительные процессы:

  • вещества распадаются на отдельные элементы (расщепляются);
  • отдельные элементы соединяются в новые вещества (синтезируются);
  • передают наследственную информацию новым клеткам;
  • умеют сохранять в равновесии свойства клетки (гомеостаз);
  • а также обладают многими другими свойствами, даже превосходящими возможности обычной химической лаборатории. 

Словарик

Неорганические вещества — это вода и минеральные соли: соль кальция, соль магния, соль фосфора и другие.

Органические вещества: углеводы, белки, жиры, нуклеиновые кислоты — основные органические вещества, которые входять в состав всех живых клеток и обеспечивают их жизнедеятельности и передачу наследственной информации.

Источник: https://bio-geo.ru/uc-pasechnik-5-8/

Химический состав клетки — какой он? :

какой химический состав клетки

Все живые организмы, за исключением вирусов, состоят из клеток. Давайте же разберемся, что это такое и какова ее структура.

Что такое клетка?

Это основная структурная единица живых существ. У нее присутствует собственный обмен веществ. Клетка может существовать и как самостоятельный организм: примером этого являются инфузории, амебы, хламидомонады и т. д. Эта структура состоит из разнообразных веществ, как органических, так и неорганических. Все химические вещества клетки играют определенную функцию в ее строении и обмене.

Химические элементы

В составе клетки насчитывается около 70 различных химических элементов, но основными из них являются кислород, углерод, водород, калий, фосфор, азот, сера, хлор, натрий, магний, кальций, железо, цинк, медь. Первые три представляют собой основу всех органических соединений. Все химические элементы клетки играют определенную роль.

Кислород

Количество этого элемента составляет 65-75 процентов от массы всей клетки. Он входит в состав практически всех органических соединений, а также воды, этим и обусловлено такое высокое его содержание. Этот элемент выполняет очень важную функцию в клетках организмов: кислород служит в качестве окислителя в процессе клеточного дыхания, вследствие которого синтезируется энергия.

Углерод

Данный элемент, как и водород, содержится во всех органических веществах. В химический состав клетки входит его около 15-18 процентов. Углерод в виде СО принимает участие в процессах регуляции клеточных функций, также он в виде СО2 участвует в фотосинтезе.

Водород

Данного элемента в клетке содержится приблизительно 8-10 процентов. Наибольшее его количество находится в молекулах воды. Клетками некоторых бактерий молекулярный водород окисляется для синтеза энергии.

Калий

В химический состав клетки входит около 0,15-0,4 % данного химического элемента. Он выполняет очень важную роль, участвуя в процессах генерации нервного импульса. Вот почему для укрепления нервной системы рекомендуется употреблять препараты с содержанием калия. Также этот элемент способствует поддержанию мембранного потенциала клетки.

Фосфор

Количество этого элемента в составе клетки равно 0,2-1 % от общего ее веса. Он входит в состав молекул АТФ, а также некоторых липидов. Фосфор присутствует в межклеточном веществе и в цитоплазме в виде ионов. Большая его концентрация наблюдается в клетках мышечной и костной ткани. Кроме того, неорганические соединения, включающие этот элемент, используются клеткой для синтеза органических веществ.

Азот

Этот элемент входит в химический состав клетки в количестве 2-3 %. Он содержится в белках, нуклеиновых кислотах, аминокислотах и нуклеотидах.

Сера

Она входит в состав многих белков, так как содержится в серосодержащих аминокислотах. В малой концентрации присутствует в цитоплазме и межклеточном веществе в виде ионов.

Хлор

Содержится в количестве 0,05-0,1 %. Поддерживает электронейтральность клетки.

Натрий

Этот элемент присутствует в составе клетки в количестве 0,02-0,03 %. Он выполняет те же функции, что и калий, а также принимает участие в процессах осморегуляции.

Кальций

Количество этого химического элемента составляет 0,04-2 %. Кальций участвует в процессе поддержания мембранного потенциала клетки и экзоцитоза, то есть выделения из нее наружу определенных веществ (гормонов, белков и т. д.)

Магний

В химический состав клетки входит 0,02-0,03 % этого элемента. Он принимает участие в энергетическом обмене и синтезе ДНК, является составляющей ферментов, хлорофилла, содержится в рибосомах и митохондриях.

Железо

Количество этого элемента составляет 0,01-0,015 %. Однако в эритроцитах его гораздо больше, так как он является основой гемоглобина.

Цинк

Содержится в инсулине, а также во многих ферментах.

Медь

Этот элемент является одной из составляющий окислительных ферментов, которые принимают участие в синтезе цитохромов.

Белки

Это самые сложные соединения в клетке, основные вещества, из которых она состоит. Они состоят из аминокислот, соединенных в определенном порядке в цепочку, а потом закрученных в клубок, форма которого специфична для каждого вида белка. Эти вещества выполняют множество важных функций в жизнедеятельности клетки. Одной из самых важных является ферментативная функция.

Белки выступают в качестве природных катализаторов, ускоряя процесс химической реакции в сотни тысяч раз — расщепление и синтез каких-либо веществ невозможны без них. Каждый вид ферментов участвует только в одной определенной реакции и не может вступать в другую. Также белки выполняют защитную функцию. Вещества этой группы, охраняющие клетку от попадания в нее чужеродных белков, называются антителами.

Эти вещества также защищают от болезнетворных вирусов и бактерий весь организм в целом. Кроме того, эти соединения выполняют транспортную функцию. Она заключается в том, что в мембранах существуют белки-транспортеры, которые переносят наружу или внутрь клетки определенные вещества. Пластическая функция этих веществ также очень важна. Они являются основным строительным материалом, из которого состоит клетка, ее мембраны и органеллы.

Иногда белки также осуществляют энергетическую функцию — при недостатке жиров и углеводов клетка расщепляет эти вещества.

Липиды

К этой группе веществ относятся жиры и фосфолипиды. Первые — основной источник энергии. Они также могут накапливаться в качестве запасных веществ на случай голодания организма. Вторые служат основной составляющей клеточных мембран.

Углеводы

Самым распространенным веществом этой группы является глюкоза. Она и подобные ей простые углеводы выполняют энергетическую функцию. Также к углеводам относятся полисахариды, молекулы которых состоят из тысяч объединенных молекул — моносахаридов. Они в основном выполняют структурную роль, входя в состав мембран. Основные полисахариды растительных клеток — это крахмал и целлюлоза, животных — гликоген.

Нуклеиновые кислоты

В эту группу химических соединений входят ДНК, РНК и АТФ.

ДНК

Это вещество выполняет важнейшую функцию — оно отвечает за хранение и наследственную передачу генетической информации. ДНК находится в хромосомах ядра.

Макромолекулы этого вещества образуются из нуклеотидов, которые, в свою очередь, состоят из азотистого основания, представленного пуринами и пиримидинами, углеводородом и остатками фосфорной кислоты. Они бывают четырех видов: адениловые, гуаниловые, тимидиловые и цитидиловые.

Название нуклеотида зависит от того, какие пурины входят в его состав, это может быть аденин, гуанин, тимин и цитозин. Молекула ДНК имеет форму двух цепочек, закрученных в спираль.

РНК

Данное соединение выполняет функцию реализации информации, которая находится в ДНК, через синтез белков, состав которых зашифрован. Это вещество очень похоже на описанную выше нуклеиновую кислоту. Основным их отличием является то, что РНК состоит из одной цепочки, а не двух. Также в состав нуклеотидов РНК входит азотистое основание урацил вместо тимина и рибоза. Поэтому данное вещество формируется из таких нуклеотидов, как адениловый, гуаниловый, уридиловый и цитидиловый.

АТФ

Любая энергия, полученная растительными клетками в процессе фотосинтеза или животными вследствие окисления жиров и углеводов, запасается в конечном счете в АТФ, из которой клетка получает ее, когда это нужно.

Источник: https://www.syl.ru/article/140705/mod_himicheskiy-sostav-kletki---kakoy-on

Химический состав клетки

какой химический состав клетки

Химические элементы в составе клетки. Как вам известно из курса химии, молекулы любых веществ построены из атомов химических элементов (см. Периодическую систему химических элементов Д. Менделеева).

Неорганические вещества составляют большую часть массы клетки, причем на воду приходится 85%, а на минеральные соли — лишь 1,5%. Особое значение имеет вода. Основные функции воды в организме: важнейший растворитель и среда для биохимических реакций; химически активное вещество; терморегулятор организма; компонент транспортной системы организма; входит в состав внутренних жидкостей организма; компонент опорной системы организма.

Минеральные соли и различные ионы неорганических соединений является обязательной составляющей любого организма. Благодаря их наличию осуществляется раздражительность и регуляция скорости обменных процессов, они являются составляющими многих важных веществ. У животных они отвечают за проведение нервных импульсов и сокращение мышечных клеток, формируют скелет, осуществляют соединения клеток.

Химические элементы, содержащиеся в клетках живых организмах, в биологии в соответствии с их количеством разделяют на две группы: макроэлементы и микроэлементы.

Макроэлементы

Группу макроэлементов составляют 12 самых распространенных в живых организмах химических элементов. Доля каждого из них в клетке составляет не менее 0,01%, а их наличие является одним из условий ее жизнедеятельности.

Особенно значительно содержание в клетке кислорода (О), углерода (С), водорода (Н), азота (N). На них приходится 98% массы клетки.

Водород и кислород образуют воду, углерод является непременным компонентом всех органических соединений, а азот — обязательная составляющая белков и нуклеиновых кислот.

Содержимое остальных восьми макроэлементов: калия (К), серы (S), фосфора (Р), хлора (Cl), магния (Мg), кальция (Са), натрия (Na), железа (Fe) — измеряется десятыми и сотыми долями процента. Их общая удельная масса составляет 1,9%.

В отличие от четырех наиболее распространенных универсальных макроэлементов, они выполняют лишь отдельные функции.

Фосфор входит в состав нуклеиновых кислот, сера является частью белков, железо содержится в гемоглобине, магний в хлорофилле, а кальций — основной элемент неорганических веществ, образующих костную ткань.

Микроэлементы

Микроэлементы — это химические элементы, которые нужны организму в незначительных количествах, обычно составляющих лишь тысячные доли процента. На них приходится лишь 0,1% массы клетки. Однако без микроэлементов невозможна нормальная работа клетки, ведь они выполняют важные функции: это составляющие белков, витаминов, гормонов, пигментов. Наличие микроэлементов в растворенном виде в цитоплазме клетки влияет на скорость процессов обмена веществ, рост и развитие.

Насчитывают более 30 микроэлементов, среди которых металлы: алюминий (Al), медь (Cu), марганец (Mn), цинк (Zn), молибден (Mo), кобальт (Co), никель (Ni), стронций (St) — и неметаллы: йод (I), селен (Se), бром (Br), фтор (F), мышьяк (As), бор (В).

Недостаток любого микроэлемента неизбежно приводит к расстройствам в работе организма и как следствие — болезни. Например, если в организм человека поступает недостаточно йода, то возникает болезнь — эндемический зоб.

Это нарушение функции щитовидной железы, которая вырабатывает гормон тироксин, в состав которого входит этот химический элемент.

Распространенную болезнь растений хлороз, которая проявляется в раннем пожелтении и опадение листьев, вызывает дефицит в почве ионов магния и железа, что приводит к недостатку пигмента хлорофилла и уменьшение фотосинтеза.

ЭТО ИНТЕРЕСНО:  Как снять решетку радиатора поло седан

Вода в составе клетки

Вода — самая большая по абсолютной массой соединение клетки. Молекула воды Н2O состоит из одного атома кислорода и двух атомов водорода. Это самое распространенное и самое важное неорганическое соединение на Земле.

Подсчитано, что вода составляет 85% общей массы среднестатистической клетки всех живых существ, хотя в клетках человека на воду приходится лишь около 64%.

Однако содержимое воды в разных клетках человека может существенно колебаться от 10% в клетках эмали зубов до 90% в клетках зародыша.

Молодые клетки всегда содержат воды больше, чем старые. Так, в клетках младенца вода составляет 86%, а в клетках пожилого возраста — лишь 50%.

Вода имеет уникальные свойства, обусловленные структурой ее поляризованной молекулы, которая имеет форму равнобедреного треугольника, в вершинах основы которого расположены положительно заряженные атомы водорода, а в третьей вершине содержится отрицательный атом кислорода.

Когда электроположительный атом водорода одной молекулы воды оказывается рядом с электроотрицательным атомом кислорода другой молекулы, то между ними возникают водородные связи, которые имеют определенную длину и направленность, а потому соединенные между собой молекулы воды образуют упорядоченную решетку.

Кристаллическая структура льда обусловлена ​​четырьмя водородными связями на одну молекулу воды (две образованные двумя атомами Н и две — одним атомом О).

Основные функции воды в организме

Полярное строение молекулы воды объясняет ее свойства как растворителя. Молекулы воды вступают во взаимодействие с химическими веществами, атомы которых имеют электростатические связи, и раскладывают их на анионы и катионы, что приводит к протеканию химических реакций. Именно поэтому многие химические реакции происходят только в водном растворе.

Вода — это химически активное вещество, которое вступает в реакцию гидролиза (от греч. Гидро — вода и Лизис — распад). Эта реакция лежит в основе многих процессов, происходящих в живых организмах, и прежде всего с ее участием происходит разложение огромных биологических молекул.

Молекулы воды также являются непосредственными составляющими реакций биологического синтеза, в частности благодаря реакции 6CO2 + 6H2O = C6H12O6 + 6O2, в клетках растений образуются органические вещества (C6H12O6 — глюкоза) и выделяется кислород (O2) т.е. происходит фотосинтез.

Вода — важнейшая терморегулирующее вещество организма, что обусловлено ее чрезвычайно высокой теплоемкостью Это объясняют тем, что часть тепловой энергии расходуется на разрушение водородных связей — преодоление сил сцепления между молекулами воды, предотвращает перегрев организма. Благодаря высокой теплоемкости воды биохимические реакции в клетках происходят в установившемся диапазоне температур.

Высокая теплота испарения воды позволяет регулировать температуру тела у млекопитающих во время потоотделения и охлаждать поверхность листьев у растений.

Вода входит в состав крови, лимфы и тканевой жидкости, которая образуется из плазмы крови, содержащей 90% воды. Тканевая жидкость заполняет межклеточные пространства тканей и органов животных и человека.

Кровь является транспортом кислорода, питательных веществ, продуктов распада, углекислого газа, гормонов, ферментов, витаминов и др. Суставная жидкость, в состав которой тоже входит вода, уменьшает трение между костями и облегчает скольжения головки одной кости в суставной впадине другой.

Вода служит средой для транспортировки растворенных веществ внутри растительного организма. Благодаря силам поверхностного натяжения вода тонкими ведущими сосудами древесины поднимается на высоту в десятки метров.

Благодаря явлениям осмоса и тургора вода обеспечивает упругое состояние взрослых клеток и является опорой организма не только у растений, но и у некоторых животных, в частности, у круглых и кольчатых червей форма тела поддерживается благодаря так называемому гидроскелету.

Воде присуще поверхностное натяжение, и поэтому капля воды пытается приобрести форму, максимально близкой к сферической. Именно благодаря силе связей между молекулами по поверхности воды могу бегать, например, почти невесомые клопы-водомерки.

Другие неорганические вещества в составе клеток

Непременными компонентами клетки являются соли неорганических (минеральных) кислот. На них приходится не более 1,5% массы клетки. Однако, несмотря на такой «скромный вклад», жизнь без минеральных веществ так же невозможна, как и без воды. В живом организме соли содержатся в водном растворе как в растворенном, так и в твердом состояниях.

Растворимые минеральные соли содержатся в виде катионов — положительно заряженных ионов металлических элементов (К+, Са2+, Мg2+, Fe2+, Zn2+ и другие) и водорода (Н+), а также анионов, основными из которых являются гидроксильная группа (-OH-) и остатки различных кислот (Cl—, SO42+, Н2РО4—, NO3—, HCO3—).

Между анионами и катионами существует соответствующая равновесие (баланс), нарушение которой приводит к функциональным расстройствам в клетке. Значение имеет также концентрация минеральных веществ — от этого зависят физические и химические свойства цитоплазмы (жидкого содержимого клетки).

Катионы K+, Na+, Ca2+ обеспечивают универсальное свойство живой материи — раздражимость, поддерживают осмотическое давление в клетке. В организме человека они обеспечивают проведение нервных сигналов, стимулируют синтез определенных гормонов.

К тому же ионы K+ и Na+ участвуют в универсальном механизме транспортировки различных соединений в клетку и их выведение за ее пределы.

Ионы Ca2+ входят в состав межклеточного вещества, которое обеспечивает скрепление клеток и упорядоченность их расположения.

Наличие иона Ca2+ предопределяет сокращение мышц. Катион Mg2+ входит в состав молекулы хлорофилла, он активизирует химические реакции, является составляющей многих ферментов, содержится в костях и зубах. Fe2+ входит в состав гемоглобина, хрусталика и роговицы глаза.

Важную роль в организмах разных видов живых существ играют анионы ортофосфорной кислоты H2PO4— и HPO42-, которые обусловливают способность клетки поддерживать нейтральное состояние своей среды, при котором цитоплазма не имеет ни кислотных, ни щелочных свойств.

Нерастворимые минеральные соли также является неотъемлемым компонентом всех опорных структур животных. При этом ключевым веществом является кальций ортофосфат Ca3(PO4)2 — составляющая межклеточного «цемента», который обеспечивает соединение клеток в ткани. Кроме того, он непременно содержится в скелете, в частности в костях позвоночных животных и в раковинах моллюсков.

Источник: http://biologichka.ru/biology/himicheskij-sostav-kletki.html

Химические элементы клетки

Клетки живых организмов по своему химическому составу значительно отличаются от окружающей их неживой среды и по структуре химических соединений, и по набору и содержанию химических элементов. Всего в живых организмах присутствует (обнаружено на сегодняшний день) около 90 химических элементов, которые, в зависимости от их содержания, разделяют на 3 основных группы: макроэлементы, микроэлементы и ультрамикроэлементы.

Ультрамикроэлементы

В состав группы ультрамикроэлементов входят элементы, содержание которых в организме крайне мало (менее 10-12 %). К ним относятся бром, золото, селен, серебро, ванадий и многие другие элементы.

Большинство из них также необходимы для нормального функционирования живых организмов. Например, нехватка селена может привести к возникновению раковых заболеваний, а недостаток бора — причина некоторых заболеваний у растений.

Многие элементы этой группы также, как и микроэлементы, входят в состав ферментов.

Перейти .

Источник: https://www.studentguru.ru/chemicals.html

в клетке химических соединений

Соединения (в %)
ВодаНеорганические вещества 70 — 801,0 — 1,5 БелкиУглеводыЖирыНуклеиновые кислотыАТФ и другие низкомолекулярные органические вещества 10 — 200,2 — 2,01 — 51,0 — 2,0  0,1 — 0,5

Неорганические вещества

На первом месте среди веществ клетки стоит вода . Она составляет почти 80% массы клетки. Вода — важнейший компонент клетки не только по количеству. Ей принадлежит существенная и многообразная роль в жизни клетки.

Вода определяет физические свойства клетки — ее объем, упругость. Велико значение воды в образовании структуры молекул органических веществ, в частности структуры белков, которая необходима для выполнения их функций.

Велико значение воды как растворителя: многие вещества поступают в клетку из внешней среды в водном растворе и водном же растворе отработанные продукты выводятся из клетки.

Наконец, вода является непосредственным участником многих химических реакций (расщепление белков, углеводов, жиров и др.).

Приспособленность клетки к функционированию в водной среде служит доводом в пользу того, что жизнь на Земле зародилась в воде.

Биологическая роль воды определяется особенностью ее молекулярной структуры, полярностью ее молекул.

К неорганическим веществам клетки, кроме воды, относятся также соли . Для процессов жизнедеятельности из входящих в состав солей катионов наиболее важны K + , Na + , Ca 2+ , Mg 2+ , из анионов — HPO 4 — , H 2 PO 4 — , Cl — , HCO 3 — .

Концентрация катионов и анионов в клетке и в среде ее обитания, как правило, резко различна. Пока клетка жива, соотношение ионов внутри и вне клетки стойко поддерживается. После смерти клетки содержание ионов в клетке и в среде быстро выравнивается.

Содержащиеся в клетке ионы имеют большое значение для нормального функционирования клетки, а также для поддержания внутри клетки постоянной реакции.

Несмотря на то что в процессе жизнедеятельности непрерывно образуются кислоты и щелочи, в норме реакция клетки слабощелочная, почти нейтральная.

Неорганические вещества содержатся в клетке не только в растворенном, но и в твердом состоянии. В частности, прочность и твердость костной ткани обеспечиваются фосфатом кальция, а раковин моллюсков — карбонатом кальция.

         Органические вещества образуют около 20 — 30% состава клетки

         Биополимеры. К биополимерам относятся углеводы и белки.

Углеводы. В состав углеводов входят атомы углерода, кислорода, водорода. Различают простые и сложные углеводы. Простые — моносахариды. Сложные — полимеры, мономерами которых являются моносахариды (олигосахариды и полисахариды). С увеличением числа мономерных звеньев растворимость полисахаридов уменьшается, сладкий вкус исчезает. Биологическая роль углеводов – см. таблицу ниже.

Биологическая роль углеводов
общая формула C n H 2 n O n

 Биологическая роль Какие белки-ферменты и белки-гормоны действуют на углеводы
Моносахариды :ГлюкозаРибоза  

В клетках

В сотаве нуклеиновых кислот

Источник: http://www.uznaem-kak.ru/ximicheskij-sostav-kletki/

Химический состав клетки: микро- и макроэлементы

Клетки всех живых организмов имеют сходный химический состав, включающий в себя органические и неорганические вещества. Каждое из таких соединений выполняет в структуре живого определенную функцию, которая связана с их строением.

Химический состав клетки

Большая часть химических элементов, находящихся в Периодической системе Менделеева Д.И., обнаружена внутри живых клеток. Там они находятся не в хаотичном расположении, а образуют органические и неорганические соединения. Хотя соединений неорганического типа внутри «живого» больше, роль органических веществ гораздо значимее!

Областью биологии, занимающейся изучением химического состава клеток, является биохимия. На долю органических веществ выпала функция определения уникальности живого организма на планете.

Макро- и микроэлементы

Все содержащиеся внутри живых клеток элементы объединяют в две большие группы: микроэлементы и макроэлементы.

О микроэлементах

Внутри живых клеток содержится минимальная часть микроэлементов (0,01%), но без этого количества живые организмы не могут полноценно существовать. В категорию микроэлементов относят:

  • фтор (формирует зубную эмаль);
  • йод (синтезирует гормон щитовидной железы);
  • кобальт (составная часть витамина В12);
  • медь (участвует в дыхании);
  • цинк (входит в состав инсулина);
  • магний (входит в состав молекулы хлорофилла у растений);
  • кремний (образование коллагеновых волокон);
  • литий (регулирует процессы размножения).

Условия окружающей среды определяют концентрацию химических элементов внутри живого организма. К примеру, повышенное содержание меди имеется внутри моллюсков, а железа – в позвоночных организмах.

Про макроэлементы

Внутри живого организма содержание макроэлементов составляет около 99%. Наиболее важная роль из них отводится:

  • азоту;
  • углероду;
  • водороду;
  • кислороду.

Это органогенные элементы, так как они образуют главные органические соединения. Остальные (сера, фосфор и прочие) отвечают за происходящие в живом организме процессы.

При избытке либо дефиците в организме микро- и макроэлементов развиваются различные заболевания. Поэтому, периодически следует восполнять концентрацию данных элементов в живом организме, увеличивая или уменьшая  их количество в пище.

Неорганические вещества клетки

В категорию неорганических соединений относят минеральные соли и воду.

  1. Минеральные соли.
    • Данные вещества представлены в организмах в нерастворенных либо растворенных формах. Их основной функцией служит поддержание буферных свойств цитоплазмы (постоянство слабощелочной реакции внутри цитоплазмы). Также они ответственны за формирование зубов и костей, участвуют в процессах кроветворения. У растений минеральные соли ответственны за интенсивность процесса фотосинтеза и рост.
  2. Молекулы воды.
    • Благодаря наличию в ее структуре прочных ковалентных связей, вода обладает ярко выраженными свойствами «растворителя». 

Органические вещества клетки

К органическим соединениям, находящимся внутри живого относят:

  1. Белки. Данные органические полимеры состоят из аминокислот, образуя в организме первичную, вторичную, третичную и четвертичную структуры строения. Основными их функциями являются: строительная (входят в состав клеточных мембран), защитная (иммунобелки)  и транспортная (перенос кислорода гемоглобином).
  2. Жиры. Это липидоподобные соединения, обладающие яркими гидрофобными свойствами. При расщеплении 1 г. жира высвобождается значительное количество энергии(38,9 кДж), идущей на поддержание температуры тела и выполнение движений.
  3. Углеводы. Данные соединения состоят из углерода, кислорода и водорода. Различают следующие группы углеводов: моносахариды (глюкоза, фруктоза, рибоза), дисахариды (сахароза, мальтоза, лактоза) и полисахариды (крахмал, гликоген, целлюлоза). При их расщеплении выделяется много энергии, необходимой для протекания процессов жизнедеятельности. Также, они способны накапливаться  как запасные питательные вещества в виде крахмала и гликогена. 
  4. Нуклеиновые кислоты. Представлены молекулами рибонуклеиновой (РНК) и дезоксирибонуклеиновой (ДНК) кислот. РНК ответственна за синтез белковых молекул и транспортировку аминокислот. ДНК отвечает за хранение наследственных признаков с их последующей передачей.
  5. Аденозинтрифосфорная кислота. Состоит из: трех остатков фосфорной кислоты, аденина (азотистое основание) и рибозы (пятиосновного сахара). Молекулы аденозинтрифосфорной кислоты АТФ отвечают за идущий в митохондриях синтез энергии и ее хранение.

Взаимосвязь строения и функций неорганических и органических веществ

Выполняемые неорганическими и органическими веществами функции тесно связаны с их строением. Так, покрывающая клетку мембрана (оболочка) содержит в своем составе углеводы, белки и липиды. Находящиеся на поверхности клеточной оболочки белки-рецепторы воспринимают сигналы из окружающего пространства, выполняя тем самым рецепторную функцию.

липидов (жиров) внутри мембран определяет проницаемость оболочки для одних соединений и непроницаемость для других. Углеводы ответственны за синтез молекул АТФ, запасающих энергию. Аналогично связано строение других компонентов клетки с их составом.

Роль химических веществ в клетке и организме человека

Внутри живых организмов каждое химическое вещество играет определенную роль, благодаря чему весь организм способен полноценно жить. Так, присутствие в клетке магния способствует выработке некоторых ферментов и формированию хлорофилла у растений. Кальций формирует прочность зубов и костей человека, а также активирует работу волокон мышц. 

Без серы в организме не смогут образовываться белки, а без ионов натрия и калия в клетку не смогут поступать некоторые соединения.

Функции химических элементов в клетке

Элемент Функция
O, H Входят в состав воды;
  • среда для протекания биохимических реакций;
  • донор электронов при фотосинтезе;
  • обуславливает рН среды;
  • транспорт веществ;
  • универсальный растворитель;
  • теплопроводность, теплоемкость.
C, O, H, N входят в состав белков, жиров, липидов, нуклеиновых кислот, полисахаридов.
K, Na, Cl проводят нервные импульсы.
Ca компонент костей, зубов необходим для мышечного сокращения, компонент свертывания крови, посредник в механизме действия гормонов.
Mg структурный компонент хлорофилла, поддерживает работу рсом и митохондрий
Fe структурный компонент гемоглобина, миоглобина.
S в составе серосодержащих аминокислот, белков.
P в составе нуклеиновых кислот, костной ткани.
B необходим некоторым растениям.
Mn, Zn, Cu активаторы ферментов, влияют на процессы тканевого дыхания.
Co входит в состав витамина В12.
F состав эмали зубов.
I состав тироксина.

Источник: https://bingoschool.ru/manual/292/

Химическая организация клетки

Химическая организация клетки — совокупность всех веществ, входящих в состав клетки. В состав клетки входит большое количество химических элементов Периодической системы, из которых 86 постоянно присутствуют, 25 необходимы для нормальной жизнедеятельности организма, а 16—18 из них абсолютно необходимы[1][2].

Органогены (биоэлементы)[ | ]

Органогены — химические элементы, входящие в состав всех органических соединений и составляющие около 98% массы клетки[1].

Элемент%содержаниеФункция
Кислород 65—75 Входит в состав большинства органических веществ клетки. Образуется в ходе фотосинтеза при фотолизе воды. Для аэробных организмов служит окислителем в ходе клеточного дыхания, обеспечивая клетки энергией. В наибольших количествах в живых клетках содержится в составе воды.
Углерод 15—18 Входит в состав всех органических веществ; скелет из атомов углерода составляет их основу. Кроме того, в виде CO2 фиксируется в процессе фотосинтеза и выделяется в ходе дыхания, в виде CO (в низких концентрациях) участвует в регуляции клеточных функций, в виде CaCO3 входит в состав минеральных скелетов.
Водород 8—10 Входит в состав всех органических веществ клетки. В наибольших количествах содержится в составе воды. Некоторые бактерии окисляют молекулярный водород для получения энергии.
Азот 2—3 Входит в состав аминокислот, белков (в том числе ферментов и гемоглобина), нуклеиновых кислот, хлорофилла, некоторых витаминов.

Макроэлементы[ | ]

Элементы, представленные в клетке в меньшем количестве — десятые и сотые доли процента[1].

Элемент%содержаниеФункция
Кальций 0,04—2,00 Содержится в мембране клетки, межклеточном веществе и костях. Участвует в регуляции внутриклеточных процессов, поддержания мембранного потенциала, передаче нервных импульсов, необходим для мышечного сокращения и экзоцитоза. Нерастворимые соли кальция участвуют в формировании костей и зубов позвоночных и минеральных скелетов беспозвоночных.
Фосфор 0,2—1,0 Входит в состав АТФ в виде остатка фосфорной кислоты (PO43-). Содержится в костной ткани и зубной эмали (в виде минеральных солей), а также присутствует в цитоплазме и межклеточных жидкостях (в виде фосфат-ионов).
Калий 0,15—0,4 Участвует в поддержании мембранного потенциала, генерации нервного импульса, регуляции сокращения сердечной мышцы. Содержится в межклеточных веществах. Участвует в фотосинтезе.
Сера 0,15—0,2 Содержится в некоторых аминокислотах, ферментах, тиамине. В небольших количествах присутствует в виде сульфат-иона в цитоплазме клеток и межклеточных жидкостях.
Хлор 0,05—0,1 Участвует в формировании осмотического потенциала плазмы крови и других жидкостей в виде аниона. Содержится в желудочном соке.
Натрий 0,02—0,03 Участвует в поддержании мембранного потенциала, генерации нервного импульса, процессах осморегуляции(в том числе в работе почек у человека) и создании буферной системы крови.
Магний 0,02—0,03 Кофактор многих ферментов, участвующих в энергетическом обмене и синтезе ДНК; поддерживает целостность рибосом и митохондрий, входит в состав хлорофилла. В животных клетках необходим для функционирования мышечных и костных систем.

Микроэлементы[ | ]

К микроэлементам, составляющим от 0,001 % до 0,000001 % массы тела живых существ, относят ванадий, германий, йод (входит в состав тироксина, гормона щитовидной железы), кобальт (витамин В12), марганец, никель, рутений, селен, фтор (зубная эмаль), медь, хром, цинк, молибден (участвует в связывании атмосферного азота), бор (влияет на ростковые процессы у растений).

Ультрамикроэлементы[ | ]

Ультрамикроэлементы составляют менее 0,000001 % в организмах живых существ, к ним относят золото, серебро, которые оказывают бактерицидное воздействие, ртуть, подавляющую обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Также к ультрамикроэлементам относят платину и цезий, бериллий, селен, радий и уран. Функции ультрамикроэлементов ещё малопонятны.

Вода[ | ]

Основная статья: Роль воды в клетке

Вода является универсальным растворителем органических и неорганических веществ; она служит резервуаром для всех биохимических реакций клетки. При участии воды происходит теплорегуляция[3][4].

Литература[ | ]

  • Билич Г. Л., Крыжановский В. А. Биология. Полный курс: В 4 т. — издание 5-е, дополненное и переработанное. — Оникс, 2009. — С. 20. — 864 с. — ISBN 978-5-488-02311-6.
  • Грин Н., Стаут У., Тейлор Д. Биология: в 3т. — Мир, 1993. — Т. 1. — С. 105—112. — 456 с. — ISBN 5-03-003685-7.

Источник: https://encyclopaedia.bid/%D0%B2%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F/%D0%A5%D0%B8%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%81%D0%BE%D1%81%D1%82%D0%B0%D0%B2_%D0%BA%D0%BB%D0%B5%D1%82%D0%BA%D0%B8

Химический состав клетки кратко

Все живые организмы состоят из клеток. Организм человека тоже имеет клеточное строение, благодаря которому возможен его рост, размножение и развитие.

Организм человека состоит из огромного числа клеток разной формы и размеров, которые зависят от выполняемой функции. Изучением строения и функций клеток занимается цитология.

Каждая клетка покрыта состоящей из нескольких слоев молекул мембраной, которая обеспечивает избирательную проницаемость веществ. Под мембраной в клетке находится вязкое полужидкое вещество – цитоплазма с органоидами.


Митохондрии
– энергетические станции клетки, рибосомы – место образования белка, эндоплазматическая сеть, выполняющая функцию транспортировки веществ, ядро – место хранения наследственной информации, внутри ядра – ядрышко. В нем образуется рибонуклеиновая кислота.

Возле ядра расположен клеточный центр, необходимый при делении клетки.

Клетки человека состоят из органических и неорганических веществ.

Неорганические вещества: Вода – составляет 80 % массы клетки, растворяет вещества, участвует в химических реакциях; Минеральные соли в виде ионов – участвуют в распределении воды между клетками и межклеточным веществом. Они необходимы для синтеза жизненно важных органических веществ. Органические вещества: Белки – основные вещества клетки, самые сложные из встречающихся в природе веществ.

Белки входят в состав мембран, ядра, органоидов, выполняют в клетке структурную функцию. Ферменты – белки, ускорители реакции; Жиры – выполняют энергетическую функцию, они входят в состав мембран; Углеводы – также при расщеплении образуют большое количество энергии, хорошо растворимы в воде и поэтому при их расщеплении энергия образуется очень быстро.

Нуклеиновые кислоты – ДНК и РНК, они определяют, хранят и передают наследственную информацию о составе белков клетки от родителей к потомству.

Клетки человеческого организма обладают рядом жизненно важных свойств и выполняют определенные функции:

В клетках идет обмен веществ, сопровождающийся синтезом и распадом органических соединений; обмен веществ сопровождается превращением энергии; Когда в клетке образуются вещества, она растет, рост клеток связан с увеличением их числа, это связано с размножением путем деления; Живые клетки обладают возбудимостью; Одна из характерных особенностей клетки – движение.

Клетке человеческого организма присущи следующие жизненные свойства: обмен веществ, рост, размножение и возбудимость. На основе этих функций осуществляется функционирование целого организма.

Химический состав клетки. Неорганические вещества клетки

Основные свойства и уровни организации живой природы

Уровни организации живых систем отражают соподчиненность, иерархичность структурной организации жизни:

• молекулярно-генетический — отдельные биополимеры (ДНК, РНК, белки);

• клеточный — элементарная самовоспроизводящаяся единица жизни (прокариоты, одноклеточные эукариоты), ткани, органы;

• организменный — самостоятельное существование отдельной особи;

• популяционно-видовой — элементарная эволюционирующая единица — популяция;

• биогеоценотический — экосистемы, состоящие из разных популяций и среды их обитания;

• биосферный — все живое население Земли, обеспечивающее круговорот веществ в природе.

Природа — это весь существующий материальный мир во всем многообразии его форм.

Единство природы проявляется в объективности ее существования, общности элементного состава, подчиненности одним и тем же физическим законам, в системности организации.

Различные природные системы, как живые, так и неживые, взаимосвязаны и взаимодействуют между собой. Примером системного взаимодействия является биосфера.

Биология — это комплекс наук, изучающих закономерности развития и жизнедеятельности живых систем, причины их многообразия и приспособленности к окружающей среде, взаимосвязь с другими живыми системами и объектами неживой природы.

Объектом исследования биологии является живая природа.

Предметом исследования биологии являются:

• общие и частные закономерности организации, развития, обмена веществ, передачи наследственной информации;

• разнообразие форм жизни и самих организмов, а также их связи с окружающей средой.

Все многообразие жизни на Земле объясняется эволюционным процессом и действием окружающей среды на организмы.

Сущность жизни определяется М.В.

Волькенштейном как существование на Земле «живых тел, представляющих собой открытые саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров — белков и нуклеиновых кислот».

Основные свойства живых систем:

• обмен веществ;

• саморегуляция;

• раздражимость;

• изменчивость;

• наследственность;

• размножение;

Химический состав клетки.

Неорганические вещества клетки

Цитология — наука, изучающая строение и функции клеток. Клетка является элементарной структурной и функциональной единицей живых организмов. Клеткам одноклеточных организмов присущи все свойства и функции живых систем.

Клетки многоклеточных организмов дифференцированы по строению и функциям.

Атомный состав: в состав клетки входит около 70 элементов Периодической системы элементов Менделеева, причем 24 из них присутствуют во всех типах клеток.

Макроэлементы — Н, О, N, С, микроэлементы — Mg, Na, Са, Fe, К, Р, CI, S, ультрамикроэлементы — Zn, Сu, I, F, Мn, Со, Si и др.

Молекулярный состав: в состав клетки входят молекулы неорганических и органических соединений.

Неорганические вещества клетки

Вода.

Молекула воды имеет нелинейную пространственную структуру и обладает полярностью. Между отдельными молекулами образуются водородные связи, определяющие физические и химические свойства воды.

Рис.

1. Молекула воды Рис. 2. Водородные связи между молекулами воды

Физические свойства воды:

• вода может находиться в трех состояниях — жидком, твердом и газообразном;

• вода — растворитель. Полярные молекулы воды растворяют полярные молекулы других веществ. Вещества, растворимые в воде, называют гидрофильными. Вещества, не растворимые в воде, — гидрофобными;

• высокая удельная теплоемкость. Для разрыва водородных связей, удерживающих молекулы воды, требуется поглотить большое количество энергии.

Это свойство воды обеспечивает поддержание теплового баланса в организме;

• высокая теплота парообразования. Для испарения воды необходима достаточно большая энергия. Температура кипения воды выше, чем у многих других веществ. Это свойство воды предохраняет организм от перегрева;

• молекулы воды находятся в постоянном движении, они сталкиваются друг с другом в жидкой фазе, что немаловажно для процессов обмена веществ;

• сцепление и поверхностное натяжение.

Водородные связи обусловливают вязкость воды и сцепление ее молекул с молекулами других веществ (когезия).

Благодаря силам сцепления молекул на поверхности воды создается пленка, которую характеризует поверхностное натяжение;

• плотность. При охлаждении движение молекул воды замедляется. Количество водородных связей между молекулами становится максимальным. Наибольшую плотность вода имеет при 4°С. Замерзая, вода расширяется (необходимо место для образования водородных связей), и ее плотность уменьшается, поэтому лед плавает на поверхности воды, что защищает водоем от промерзания;

• способность к образованию коллоидных структур.

Клетка и ее химический состав

Молекулы воды образуют вокруг нерастворимых молекул некоторых веществ оболочку, препятствующую образованию крупных частиц. Такое состояние этих молекул называется дисперсным (рассеянным). Мельчайшие частицы веществ, окруженные молекулами воды, образуют коллоидные растворы (цитоплазма, межклеточные жидкости).

Биологические функции воды:

• транспортная — вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма.

В природе вода переносит продукты жизнедеятельности в почвы и к водоемам;

• метаболическая — вода является средой для всех биохимических реакций и донором электронов при фотосинтезе, она необходима для гидролиза макромолекул до их мономеров;

• участвует в образовании:

1) смазывающих жидкостей, которые уменьшают трение (синовиальная — в суставах позвоночных животных, плевральная, в плевральной полости, перикардиальная — в околосердечной сумке);

2) слизей, которые облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей;

3) секретов (слюна, слезы, желчь, сперма и т.д.) и соков в организме.

Неорганические ионы.

Неорганические ионы клетки представлены: катионами К+, Na+, Са2+, Mg2+, NH3 и анионами Сl-, NOi2-, H2PO4-, HCO3-, HPO42-.

Разность между количеством катионов и анионов на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе нервного и мышечного возбуждения.

Анионы фосфорной кислоты создают фосфатную буферную систему, поддерживающую рН внутриклеточной среды организма на уровне 6—9.

Угольная кислота и ее анионы создают бикарбонатную буферную систему и поддерживают рН внеклеточной среды (плазмы крови) на уровне 4—7.

Соединения азота служат источником минерального питания, синтеза белков, нуклеиновых кислот.

Атомы фосфора входят в состав нуклеиновых кислот, фосфолипидов, а также костей позвоночных, хитинового покрова членистоногих. Ионы кальция входят в состав вещества костей, они также необходимы для осуществления мышечного сокращения, свертывания крови.

Дата добавления: 2016-05-30; просмотров: 3106;

Источник: https://ekoshka.ru/himicheskij-sostav-kletki-kratko/

Дезоксирибонуклеиновая кислота

Молекула ДНК имеет сложное строение. Она состоит из двух спирально закрученных нитей. Ее мономерами служат нуклеотиды. Каждый нуклеотид — химическое соединение, состоящее их трех веществ: азотистого основания, пятиатомного сахара дезоксирибозы и остатка фосфорной кислоты.

Фосфорная кислота и углевод (дезоксирибоза) у всех нуклеотидов одинаковы, а азотистые основания бывают четырех типов: аденин, гуанин, цитозин и тимин. Они и определяют название соответствующих нуклеотидов: адениловый (А), гуаниловый (Г), тимидиловый (Т) и цитидиловый (Ц).

Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов.

Азотистые основания в молекуле ДНК соединены между собой неодинаковым количеством водородных связей. Аденин-тимин образуют две водородные связи, гуанин-цитозин соединяются тремя водородными связями.

Способность к избирательному взаимодействию аденина с тимином, а гуанина с цитозином, основанная на особенностях расположения в пространстве атомов этих молекул, называется комплементарностъю (дополнительностью). Это объясняется тем, что А и Т и Г и Ц строго соответствуют друг другу, как две половинки разбитого стекла, дополняют друг друга, отсюда и название комплементарность (от греч. «комплемент» — дополнение).

Если известно расположение нуклеотидов в одной цепи, то по принципу комплементарности можно определить порядок нуклеотидов во второй цепи. Например, если последовательность нуклеотидов в одной цепи будет А—А—А—Ц—Т—Т—Г—Г—Г, то на соответствующем участке второй цепи последовательность нуклеотидов обязательно будет следующей: Т-Т-Т—Г-А—А-Ц-Ц-Ц.

Соединяются комплементарные нуклеотиды водородными связями. Удвоение молекулы ДНК — ее уникальная способность, обеспечивающая передачу наследственной информации от материнской клетки дочерним.

Этот процесс получил название редупликации ДНК. Он осуществляется следующим образом. Незадолго перед делением клетки молекула ДНК раскручивается, и ее двойная цепочка под действием фермента с одного конца расщепляется на две самостоятельные цепи.

На каждой половине из свободных нуклеотидов клетки, по принципу комплементарности, выстраивается вторая цепь. В результате вместо одной молекулы ДНК возникают две совершенно одинаковые молекулы.

Таким образом, процесс редупликации обеспечивает точное копирование информации и передачу ее из поколения в поколение.

ДНК называют веществом наследственности, так как биологическая наследственная информация закодирована в ее молекулах с помощью химического кода. В клетках всех живых существ один и тот же код. В его основе лежит последовательность соединений в нитях ДНК четырех азотистых оснований: А, Т, Г, Ц.

Различные комбинации трех смежных нуклеотидов образуют триплеты, называемые кодонами.

Рибонуклеиновая кислота

Рибонуклеиновая кислота — РНК — полимер, по структуре сходный с одной цепочкой ДНК, но значительно меньших размеров. Мономерами РНК являются нуклеотиды» состоящие из фосфорной кислоты углевода (рибозы) и азотистого основания. Три азотистых основания РНК — аденин, гуанин и цитозин — соответствуют таковым ДНК, а вместо тимина в РНК присутствует урацил. Образование биополимера РНК происходит через ковалентные связи между рибозой и фосфорной кислотой соседних нуклеотидов.

Известны три вида РНК: информационная РНК (и-РНК) передает информацию о структуре белка с молекулы ДНК, транспортная РНК (т-РНК) транспортирует аминокислоты к месту синтеза белка и рибосомная РНК (р-РНК) — содержится в рибосомах, участвует в поддержании структуры рибосомы.

Источник: http://shkolo.ru/himicheskiy-sostav-kletki-2/

Химический состав клеток

Клетка

Сточки зрения концепции живых систем поА. Ленинджеру.

  1. Живая клетка – это способная к саморегуляции и самовоспроизведению изотермическая система органических молекул, извлекающая энергию и ресурсы из окружающей среды.

  2. В клетке протекает большое количество последовательных реакций, скорость которых регулируется самой клеткой.

  3. Клетка поддерживает себя в стационарном динамическом состоянии, далеком от равновесия с окружающей средой.

  4. Клетки функционируют по принципу минимального расхода компонентов и процессов.

Т.о.клетка – элементарная живая открытаясистема, способная к самостоятельномусуществованию, воспроизведению иразвитию. Она является элементарнойструктурно-функциональной единицейвсех живых организмов.

Из110 элементов периодической системыМенделеева в организме человекаобнаружено 86 постоянно присутствующих. 25 из них необходимы для нормальнойжизнедеятельности, причем 18 из нихнеобходимы абсолютно, а 7 — полезны. Всоответствии с процентным содержаниемв клетке химические элементы делят натри группы:

  1. Макроэлементы Основные элементы (органогены) – водород, углерод, кислород, азот. Их концентрация: 98 – 99,9 %. Они являются универсальными компонентами органических соединений клетки.

  2. Микроэлементы – натрий, магний, фосфор, сера, хлор, калий, кальций, железо. Их концентрация 0,1%.

  3. Ультрамикроэлементы – бор, кремний, ванадий, марганец, кобальт, медь, цинк, молибден, селен, йод, бром, фтор. Они влияют на обмен веществ. Их отсутствие является причиной заболеваний (цинк — сахарный диабет, иод — эндемический зоб, железо — злокачественная анемия и т.д.).

Современноймедицине известны факты отрицательноговзаимодействия витаминов и минералов:

  • Цинк снижает усвоение меди и конкурирует за усвоение с железом и кальцием; (а дефицит цинка вызывает ослабление иммунной системы, ряд патологических состояний со стороны желез внутренней секреции).
  • Кальций и железо снижают усвоение марганца;
  • Витамин Е плохо совмещается с железом, а витамин С – с витаминами группы В.

Положительноевзаимовлияние:

  • Витамин Е и селен, а также кальций и витамин К действуют синергично;
  • Для усвоения кальция необходим витамин Д;
  • Медь способствует усвоению и повышает эффективность использования железа в организме.

Неорганические компоненты клетки

Вода– важнейшая составная часть клетки,универсальная дисперсионная средаживой материи. Активные клетки наземныхорганизмов состоят на 60 – 95% из воды. Впокоящихся клетках и тканях (семена,споры) воды 10 — 20%.

Вода в клетке находитсяв двух формах – свободной и связаннойс клеточными коллоидами. Свободная водаявляется растворителем и дисперсионнойсредой коллоидной системы протоплазмы.Ее 95%.

Связанная вода (4 – 5 %) всей водыклетки образует непрочные водородныеи гидроксильные связи с белками.

Свойства воды:

  1. Вода – естественный растворитель для минеральных ионов и других веществ.

  2. Вода – дисперсионная фаза коллоидной системы протоплазмы.

  3. Вода является средой для реакций метаболизма клетки, т.к. физиологические процессы происходят в исключительно водной среде. Обеспечивает реакции гидролиза, гидратации, набухания.

  4. Участвует во многих ферментативных реакциях клетки и образуется в процессе обмена веществ.

  5. Вода – источник ионов водорода при фотосинтезе у растений.

Биологическое значение воды:

  1. Большинство биохимических реакций идет только в водном растворе, многие вещества поступают и выводятся из клеток в растворенном виде. Это характеризует транспортную функцию воды.

  2. Вода обеспечивает реакции гидролиза – расщепление белков, жиров, углеводов под действием воды.

  3. Благодаря большой теплоте испарения происходит охлаждение организма. Например, потоотделение у человека или транспирация у растений.

  4. Большая теплоемкость и теплопроводность воды способствует равномерному распределению тепла в клетке.

  5. Благодаря силам адгезии (вода – почва) и когезии (вода – вода) вода обладает свойством капиллярности.

  6. Несжимаемость воды определяет напряженное состояние клеточных стенок (тургор), гидростатический скелет у круглых червей.

Соседние файлы в папке лекции биология

Источник: https://studfile.net/preview/2854557/

Какие химические элементы входят в состав клетки? Роль и функции химических элементов, входящих в состав клетки

Сегодня обнаружено и выделено в чистом виде много химических элементов таблицы Менделеева, а пятая их часть встречается в каждом живом организме. Они, подобно кирпичикам, являются главными составляющими органических и неорганических веществ.

Какие химические элементы входят в состав клетки, по биологии каких веществ можно судить об их наличии в организме — все это мы рассмотрим далее в статье.

Что такое постоянство химического состава

Для соблюдения стабильности в организме каждая клетка должна поддерживать концентрацию каждой своей составляющей на постоянном уровне. Этот уровень определяется видовой принадлежностью, средой обитания, экологическими факторами.

Чтобы ответить на вопрос, какие химические элементы входят в состав клетки, необходимо четко понимать, что в составе любого вещества находятся какие-либо из составляющих таблицы Менделеева.

Порой идет речь о сотых и тысячных долях процента содержания определенного элемента в клетке, но при этом изменение названного числа хотя бы на тысячную часть уже может нести серьезные последствия для организма.

Из 118 химических элементов периодической системы в клетке человека должно быть как минимум 24. Нет таких составляющих, которые встречались бы в живом организме, но не входили в состав неживых объектов природы. Этот факт подтверждает тесную связь между живым и неживым в экосистеме.

Так какие химические элементы входят в состав клетки? Их роль в жизнедеятельности организма, следует заметить, напрямую зависит от частоты встречаемости и концентрации их в цитоплазме. Однако, несмотря на разное содержание элементов в клетке, значимость каждого из них в равной степени высока. Дефицит любого из них может привести к пагубному воздействию на организм, отключив из метаболизма важнейшие биохимические реакции.

Перечисляя, какие химические элементы входят в состав клетки человека, нужно упомянуть три основных вида, которые мы рассмотрим далее:

  1. Основные биогенные.
  2. Макроэлементы.
  3. Микроэлементы.

Основные биогенные элементы клетки

Неудивительно, что элементы О, С, Н, N относятся к биогенным, ведь именно они образуют все органические и многие неорганические вещества. Невозможно представить белки, жиры, углеводы или нукленовые кислоты без этих важнейших для организма составляющих.

Функция этих элементов определила их высокое содержание в организме. На их долю в совокупности приходится 98% от всей сухой массы тела. В чем еще может проявляться активность этих ферментов?

  1. Кислород. Его содержание в клетке около 62% от общей сухой массы. Функции: построение органических и неорганических веществ, участие в цепи дыхания;
  2. Углерод. Его содержание достигает 20%. Основная функция: входит в состав всех органических соединений;
  3. Водород. Его концентрация принимает значение в 10%. Кроме того, что этот элемент является составляющей органических веществ и воды, он также учавствует в преобразованиях энергии;
  4. Азот. Количество не превышает 3-5%. Его основная роль – это образование аминокислот, нуклеиновых кислот, АТФ, многих витаминов, гемоглобина, гемоцианина, хлорофилла.

Вот какие химические элементы входят в состав клетки и образуют большинство необходимых для нормальной жизнедеятельности веществ.

Значение макроэлементов

Макроэлементы также помогут подсказать, какие химические элементы входят в состав клетки. Из курса биологии становится понятно, что, кроме основных, 2% сухой массы составляют другие составляющие периодической таблицы. И к макроэлементам относятся те из них, содержание которых не ниже 0,01%. Их основные функции представлены в виде таблицы.

Элемент

в %

Функции

Кальций (Са)

2,5

Отвечает за сокращение мышечных волокон, входит в состав пектина, костей и зубов. Усиливает свертываемость крови.

Фосфор (Р)

1

Входит в состав важнейшего источника энергии – АТФ.

Сера (S)

0,25

Участвует в образовании дисульфидных мостиков при сворачивании белка в третичную структуру. Входит в состав цистеина и метионина, некоторых витаминов.

Калий (К)

0,25

Ионы калия участвуют в активном транспорте клетки, а также влияют на потенциал мембраны.

Хлор

0,2

Главный анион организма

Натрий (Na)

0,1

Аналог калия, участвующий в тех же процессах.

Магний (Mg)

0,07

Ионы магния – это регуляторы процесса репликации ДНК. В центре молекулы хлорофилла также распологается атом магния.

Железо

0,01

Участвует в транспорте электронов по ЭТЦ дыхания и фотосинтеза, является структурным звеном миоглобина, гемоглобина и многих ферментов.

Надеемся, из перечисленного несложно определить, какие химические элементы входят в состав клетки и относятся к макроэлементам.

Органические и неорганические вещества

Кроме перечисленных, еще какие химические элементы входят в состав клетки? Ответы можно найти, просто изучив строение большинства веществ организма. Среди них выделяют молекулы органического и неорганического происхождения, и каждая из этих групп имеет в составе фиксированный набор элементов.

Основные классы органических веществ — это белки, нуклеиновые кислоты, жиры и углеводы. Они построены полностью из основных биогенных элементов: скелет молекулы всегда образован углеродом, а водород, кислород и азот входят в состав радикалов.

У животных доминирующим классом являются белки, а у растений – полисахариды.

Неорганические вещества – это все минеральные соли и, конечно же, вода. Среди всей неорганики в клетке больше всего Н2О, в которой растворены остальные вещества.

Все сказанное выше поможет вам определить, какие химические элементы входят в состав клетки, и их функции в организме больше не будут для вас загадкой.

Источник: https://FB.ru/article/244742/kakie-himicheskie-elementyi-vhodyat-v-sostav-kletki-rol-i-funktsii-himicheskih-elementov-vhodyaschih-v-sostav-kletki

Понравилась статья? Поделиться с друзьями:
Ваш автомастер
Где блок предохранителей на гранте

Закрыть